
TDD Workshop Assesment by AgileFAQs

Confidential Prepared by Naresh Jain on 14-Nov-2009 Page 1

Name Assessment Overall Score Program Meets
Requirements

of
Classes

Total
Code
Size

Method
Length
Range

of
Test

Cases

Total
Code
Size

Method
Length
Range

Knowledge of
xUnit Code Smells in the code Object Oriented Design Skill Cyclomatic Complexity NPath

Complexity
Fan-Out

Complexity Quality of Unit Test Test Coverage

Pre

Poor.
Word to word copy of

Meetanshu Gupta's
solution

No.
The exempted
items are hard
coded.
The tax % is hard
coded.
Rounding logic is
missing.

4 106 1-17 4 68 11-11 None

Conditional Complexity (10)
Long Method (17)
Magic Numbers
Duplicate Code
Data Class
Switch Statements
Feature Envy
Indecent Exposure
Primitive Obsession
Dead Code
Temporary Field
Inappropriate Naming

Code is extremely Procedural in nature. Violates most basic OO
design principles (SOLID, Tell Don't Ask, DRY, etc.)

10

10 3

Has written the tests in Main method.
No assert statements, have to
manually check.
Checks only a few end-to-end happy
path cases.
Massive duplication in the tests.

0%

Post

Good
Overall Good

improvement on both OO
design and Quality of

Unit Tests compared to
Pre-Assessment.

Yes.
Only thing is your
program could
avoid aking the
startDateTime and
use Now instead.

2 120
12 (>10 -

Watch
Out)

3 224

20
(>10 -
Watch
Out)

Good Conditional Complexity (4)

Good.
Nice distribution of responsibility.
Good to see well named small methods.
I don't like the fact the your GetEarliestFreeSlot returns a null if it
can't find a slot.
A large number of methods in Calendar class are static, this could be
avoided.
Good to see that you've externalized DayStartHour and DayEndHour
to properties file.

6

2 3

Pretty Good.
Nice test names.
Each test has a single responsibility.
I'm not a fan of TestData classes, as
they make tests harder to understand,
but I like the fact that you've used it
to eliminate duplcate data.
Overall the coverage is really good.

97%

Pre

Very Poor.

Feels like the training
had no impact.

Its hard to
understand what
the code is doing.
Even if it were to
meet the
requirements, the
code is pretty
much useless.

5 182 1-19 1 141 2-19

Very Poor.
Production

code contains
test code.

Also one test
class is a

hotch-potch
of stuff. Can't

make any
sense of it.

Verbose Code
Inappropriate Naming
Comments
Dead Code
Duplicated code
Primitive Obsession
Lazy Class
Long Method
Oddball Solution
Feature Envy
Black Sheep
Conditional Complexity
Data Class
Indecent Exposure
Solution Sprawl
Temporary Field

Extremely poor OO Design skills. Solution contains the following
classes:

Calendar (Just a data class with all public fields)
FreeTimeSlot (contains one large method to calculate common free
slot)
Main (Contains test data)
MeetingAssisstant (Contains a method to initialize the system)
Participant (Just a data class with all public fields)

11

9 5

Pretty low coverage.
Most code in the test is commented
out.
Extremely poor test names.
I've not idea what the
objective/purpose of the test is.
Lot of duplication in the test.

28%

Post Slightly Above Average

Mostly.
Works only for 2
participants.
Good initial
thoughts on
optimizing your
solution. However
overall solution
could be much
simpler.

2 76

21
(>10 -
Watch
Out)

1 131

12
(>10 -
Watch
Out)

Decent Conditional Complexity
Magic Numbers

Decent.
Good separation of responsibilities.
Except one method, rest of them are small and have single
responsibility.
Good to see you use _schedule and _emptySlots to speed up the
process of finding an empty slot. This could be further simplified.
Your Assistant class works only with 2 participants. Why? This will not
satisfy our requirement.
Using out parameters is a bad practice, makes it hard to understand
what is going on. Should be avoided.

8

1 1

Good coverage of different scenarios.
Tests are getting a little repetitive and
verbose, would be good to address
this issues.
If conditions and Sysouts in the tests
are an anti-pattern which needs to be
avoided.
No tests for exceptional conditions.

83%

Pre Slightly below average

Partially.
The logic is
implemented
correctly.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

7 165 1-48 0 0 0 ?

Dead Code
Magic Numbers
Duplicated code
Large Class
Long Method
Switch Statements
Speculative Generality
Feature Envy
Conditional Complexity
Data Class
Temporary Field

Couple of good abstractions.
OK in terms of modularity. But the BillingSystem class is very
monolithic, complex and procedural.
Little bit of speculative generality with the TaxCalculator

12

39 9 No Tests

0%

Post

Good
Overall Good

improvement on both OO
design and Quality of

Unit Tests compared to
Pre-Assessment.

Mostly.
Your program only
searches for
available slots in
the same day, but
the requirementis
to search in future
dates as well.
Nice initial
thoughts on
optimizing the data
structure to store
the schedule.

4 162
31

(>25 -
Scary)

1 129

18
(>10 -
Watch
Out)

Good
Magic Numbers
Duplicate Code
Long Method

Nice distribution of responsiblities.
Good to see much crisper code.
Some duplication between Participant and MeetingScheduler could be
avoided.
Why is all the production code inder the Test namespace?
Consider breaking up ScheduleMeeting into smaller methods. Also
consider using recursion to simplify your logic.

10

4 3

Good.
Nice test names.
Each test has a single responsibility.
Some duplication between the tests
could be reduced.
Overall good coverage.

42%

Pre

Poor.
Word to word copy of
Ankit Prem Manocha's

solution

No.
The exempted
items are hard
coded.
The tax % is hard
coded.
Rounding logic is
missing.

4 106 1-17 4 68 11-11 None

Conditional Complexity (10)
Long Method (17)
Magic Numbers
Duplicate Code
Data Class
Switch Statements
Feature Envy
Indecent Exposure
Primitive Obsession
Dead Code
Temporary Field
Inappropriate Naming

Code is extremely Procedural in nature. Violates most basic OO
design principles (SOLID, Tell Don't Ask, DRY, etc.)

10

10 3

Has written the tests in Main method.
No assert statements, have to
manually check.
Checks only a few end-to-end happy
path cases.
Massive duplication in the tests.

0%

Post

Slightly below Average.

Slight improvement
compared to pre-

assessment when we
look at the testing side
of things, however OO
Design is pretty much

the same.

Large number of code
smells in the code.

Looks like you've at least
applied some TDD

principles.

Mostly. 6 163 2-29 5 277 2-10 Good

Magic Numbers
Verbose Code
Comments
Dead Code
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Black Sheep
Conditional Complexity
Data Class
Indecent Exposure
Temporary Field

OO design needs significant improvement. Out of the 6 classes, the
core logic is just in 1 static class.
AppointmentType (enum)
EmployeeCalendar (Data class - basically a list wrapper no real logic)
EmployeeCalendarEntry (Struct - no logic)
Employee (Data class - no logic)
EmployeeFinder (List wrapper)
SchedulingAssistant (Static class. Only meaning full code which is
directly related to the problem at hand. Rest all classes are just
orthogonal classes)

9

27 7

Good test coverage.
Good test names.
Since the setup data is in a different
class from the test, it gets quite hard
to understand why certain test results
are showing up.
The tests are very verbose and
duplicated. Noise to Signal ratio is
very large.
Most complex method is least covered.

87%

Pre Average

Partially.
The logic is
implemented
correctly.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

5 94 1-20 2 32 2-3 Basic

Magic Number
Duplicate Code
Comments
Large Class
Lazy Class
Long Method
Feature Envy
Data Class
Indecent Exposure

Code is small and concise. Its mostly procedural, with a little bit of
objects sprinkled over. The BigBill class is a God Object which does
most of the logic. Its mostly static methods, not really an Object.

5

12 7
Did not test the core of the logic.
Poor test names.
Assert Statement syntax is wrong.

30%

Student 2

Production Code Test Code OO Design Skill Testing Skill

Student 1

Student 3

Student 4

Student 5

TDD Workshop Assesment by AgileFAQs

Confidential Prepared by Naresh Jain on 14-Nov-2009 Page 2

Name Assessment Overall Score Program Meets
Requirements

of
Classes

Total
Code
Size

Method
Length
Range

of
Test

Cases

Total
Code
Size

Method
Length
Range

Knowledge of
xUnit Code Smells in the code Object Oriented Design Skill Cyclomatic Complexity NPath

Complexity
Fan-Out

Complexity Quality of Unit Test Test Coverage

Production Code Test Code OO Design Skill Testing Skill

Post

Good.

Nice improvements from
the pre-assessment.

Looks like you've applied
a good number of TDD
principles. More scope

for improvement.

Yes 3 78 1-13 3 194 2-101 Good
Magic Numbers
Dead Code
Conditional Complexity

Good OO Design. Minor improvements possible.

9

7 3

Good test coverage.
Good test names, can slightly improve
it.
A huge method to set up the test
data. It gets quite hard to understand
why certain test results are showing
up.
The tests are a bit verbose.
Since the participants are statically
setup using @BeforeClass, one test
can have a side effect on another test.

82%

Pre Slightly below average

Partially.
The logic is
implemented
correctly.
Rounding logic
implemented
correctly, but logic
to display double is
wrong.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

3 37 1-19 3 61 4-23 None

Inappropriate Naming
Magic Number
Long Method
Feature Envy
Conditional Complexity
Data Class
Indecent Exposure

Completely procedural code. (Class with bunch of static methods and
1 enum + a data class.)

5

16 2

Has written the tests in Main method.
No assert statements, have to
manually check.
Checks all the end-to-end happy path
cases.

0%

Post

Below Average.

At least has written one
Junit test. So is a slight

improvement from
before. But OO skills

remain the same.

I don't think you've used
any TDD Principles.

Looks like the test was
retro-fitted in the end.

Partially.
Assumes that a
month is 30 days
long.

3 101 2-22 1 102 3-11 Basic

Magic Numbers
Verbose Code
Inappropriate Naming
Dead Code
Duplicated code
Primitive Obsession
Large Class
Long Method
Black Sheep
Conditional Complexity
Indecent Exposure
Temporary Field

OO Design skills needs improvement.

Slot - Is mostly a data class except for one method. Also exposes all
its internals.
CalendarAssistUtilities - Extremely complex util class.
CalendarAssist - Basically a static class with one long, complex
method.

Overall code is obsessed with boolean flags.

14

66 3

Coverage is not adequate.
Test names can be improved.
Lot of duplication in the test.
Its very hard to understand what the
tests are doing. Tests are not very
communicative.
Looks like the test were retro-fitted in
the end.

79%

Pre Slightly below average

Mostly.
The logic is
implemented
correctly.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

7 200 2-37 1 101 2-36 Basic

Magic Number
Comments
Dead Code
Duplicated code
Primitive Obsession
Long Method
Switch Statements
Conditional Complexity
Data Class
Indecent Exposure
Temporary Field

Modular, but mostly procedural design.
Obsessed with Getters/Setters.
Quite a bit of duplication in code.

8

7 7

Tests check all the end-to-end happy
path cases.
Poor test names.
Assert Statement syntax is wrong.

36%

Post

Slightly Below Average.

Not much improvement
since the pre-
assessment.

I don't think you've
applied TDD principles.

Partially. Lunch
hour is hard-
coded.

4 167 2-32 4 201 3-23 Basic

Magic Numbers
Verbose Code
Inappropriate Naming
Comments
Dead Code
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Switch Statements
Black Sheep
Conditional Complexity
Indecent Exposure
Temporary Field

OO design needs a lot of improvement. If you look at the solution, it
contains the following 4 classes:

Assistant (Main class, but contains only bunch of static methods)
Calenders (Wrapper around a map. A wanna-be domain object)
Day (Wrapper around free-slots. A wanna-be domain object)
TimeDay (Data class, no logic)

Lots of sysouts in the code. Obsessed with primitive types. setStatus
method returns a boolean flag and also throws an exception.

10

22 6

Most complex part of the code is not
tested.
Some tests are failing when I execute
them.
Tests are very verbose and contains a
lot of duplication.
Extremely hard to understand what
the tests are trying to test.

30%

Pre Above Average

Mostly.
The logic is
implemented
correctly.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

7 92 1-6 3 55 1-12 Decent

Magic Number
Comments
Dead Code
Duplicated code
Lazy Class
Data Class

Good OO design.
Small well defined classes with small focused methods.
Extremely low complexity.
Can avoid some unnecessary gets. It breaks encapsulation.
Overall best design so far.

2

2 4

Tests check all the end-to-end happy
path cases.
Assert statement syntax is correct.
Some duplication can be avoided.
Overall, the best test cases so far.

80%

Post

Above Average

Nice improvements from
the pre-assessment.

Looks like you've applied
a good number of TDD
principles. More scope

for improvement.

Mostly. 4 119 2-11 4 120 2-39 Good Magic Numbers
Conditional Complexity Good OO Design. Minor improvements possible.

10

16 4

Good test coverage.
Good test names, can slightly improve
it.
A huge method to set up the test
data. It gets quite hard to understand
why certain test results are showing
up.
The tests are a bit verbose/repetitive.
One of the most complex method is
not tested.

86%

Pre

Below average
Code is exactly same as
Varun Bishnoi's code.
Except a few classes

were renamed.

Partially.
The logic is mostly
correct, except the
rounding logic.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

6 169 2-17 0 0 0 ?

Magic Number
Comments
Dead Code
Lazy Class
Long Method
Speculative Generality
Feature Envy
Data Class
Temporary Field

Mostly procedural design.
Data and logic in separate places.
Lots of getters and setters.
Unnecessarily created an Exception class.

7

4 3 No Tests

0%

Post

Slightly below Average.

Great improvement
compared to pre-

assessment when we
look at the testing side
of things, however OO
Design is pretty much

the same.

Large number of code
smells in the code.

Looks like you've applied
some TDD principles, but
there is a large scope for

improvement.

Mostly. 10 179 2-11 3 189 2-6
Decent.

Scope for
improvement

Magic Numbers
Verbose Code
Inappropriate Naming
Comments
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Black Sheep
Conditional Complexity
Data Class
Indecent Exposure

OO design needs significant improvement. Out of the 10 classes, the
core logic is just in 1 static class.
Employee (Data class with no behavior in it)
3 exception classes. Not sure why we need them. Just clutters the
method signature every where. Also all of them have the same
serialVersionUID. A classic example of IDE vomit.
MyOffice (Data class - just wraps a map of employees)
SchedulingAssistant (Contains the main logic. However all methods
are static.)
3 Util classes: (Util classes are a good example of procedural code.
Also not sure why these classes need to be constructed.)

7

2 3

Good test names.
Nice use of fluent interfaces to make
the tests crisp and communicative.
Code Coverage can be improved.
Should stick to one scenario per test
method. Also could look at using
Parameterized Tests to run same
scenario with multiple test data.
Should avoid catching unexpected
exceptions in the test. Ideally the test
should fail if such exceptions occur.
Some tests are failing when I execute
them.

63%

Student 7

Student 6

Student 8

Student 9

Student 5

TDD Workshop Assesment by AgileFAQs

Confidential Prepared by Naresh Jain on 14-Nov-2009 Page 3

Name Assessment Overall Score Program Meets
Requirements

of
Classes

Total
Code
Size

Method
Length
Range

of
Test

Cases

Total
Code
Size

Method
Length
Range

Knowledge of
xUnit Code Smells in the code Object Oriented Design Skill Cyclomatic Complexity NPath

Complexity
Fan-Out

Complexity Quality of Unit Test Test Coverage

Production Code Test Code OO Design Skill Testing Skill

Pre Average

Mostly.
The logic is
implemented
correctly.
Both the exempted
items and tax % is
being externalized
to the DB.
However its not
clear how the
taxes get assigned
in the first place.

9 231 2-22 1 50 7-15 Good

Magic Number
Comments
Dead Code
Duplicated code
Large Class
Lazy Class
Long Method
Speculative Generality
Feature Envy
Data Class
Verbose Code

The design in very enterprisy (verbose.)
Very procedural design with a bunch of data classes.
Lots of getters and setters breaking encapsulation.
Data and logic are not together.
SalesTaxCalculator is a God object.
The Item class is constructed with the applicable tax; breaks the
temporal symmetry principle.

16

128 11

Has written one test using mock
objects, but only partially tests the
core logic.
Test has a huge setup highlighting
problem with the design (tight
coupling).
Since we are testing from a higher
point, the test does not communicate
the intent very well.

47%

Post

Average.

Good improvement
compared to the pre-
assessment, but still

there is a lot of room for
improvement.

Looks like you've at least
applied some TDD

principles. But there is a
large scope for
improvement.

Mostly. 7 138 2-17 2 112 6-17
Decent.

Scope for
improvement

Verbose Code
Dead Code
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Switch Statements
Black Sheep
Conditional Complexity
Data Class
Indecent Exposure
Temporary Field

OO design needs a lot of improvement. If you look at the solution, it
contains 7 classes, out of which only 2 make sense, rest of them are
examples of poor OO.

4 Domain classes (Mostly lazy classes. They don't seem to be pulling
their weight, except the RealClock)
Calendar, Hour, HourStatus, RealClock

Clock (Interface to abstract from system time)
SystemUserdetailsProvider (Not sure of the value of this abstraction.
Could have simply passed in the Calendar class)
MeetingTimeSelector (Main class containing all the logic. Mostly a
static class, except for the forced setter based dependency)

14

64 6

Good test names.
Code Coverage can be improved.
Most complex piece of code is not
tested.
Test code is very verbose and contains
lots of duplication.
Nice to see you use Mockito, however
I'm concerned that its not being used
in the most effective manner.
Test should not catch and suppress
exceptions.

54%

Pre Below average

The code is buggy
it won't work.
Has tried to
externalize the
exempted items to
the DB, however
the tax % are still
hard-coded.
Rounding logic is
missing.

5 82 2-21 0 0 0 None

Dead Code
Lazy Class
Long Method
Feature Envy
Inappropriate Intimacy
Data Class
Indecent Exposure

Mostly procedural design.
Data and logic in separate places.
Lots of getters and setters.
PriceCalculator is the God object which does all the calculation.

4

5 4 Started to write a test but abandoned
it mid way.

0%

Post

Below Average.

Some improvement since
the pre-assessment.

Good to see you write
some unit tests. But you
have a long way to go.

I don't think you've
applied TDD principles.

No.

I love the fact that
you've tried to
come up with the
simplest possible
solution for this
problem. However
I feel you've over-
simplified the
solution and its not
usable any more.

2 40 4-14 1 36 3-15 Basic

Magic Numbers
Verbose Code
Inappropriate Naming
Dead Code
Primitive Obsession
Lazy Class
Conditional Complexity
Data Class
Indecent Exposure
Temporary Field

OO design needs improvement. Out of the 2 classes, the core logic is
just in 1 class.
Calender class is just a lazy class which really can be replaced with a
list.
Scheduler class which contains bulk of the logic, is just a static class
with one large method.

11

28 2

Decent coverage.
Test names can be improved.
Lot of duplication in the test.
Tests are very implementation
specific, had to spend time
understanding what the test is doing.

93%

Pre

Below average
Code is exactly same as
Shambhu Singh's code.

Except a few classes
were renamed.

Partially.
The logic is mostly
correct, except the
rounding logic.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.

6 167 2-17 0 0 0 ?

Magic Number
Comments
Dead Code
Lazy Class
Long Method
Speculative Generality
Feature Envy
Data Class
Temporary Field

Mostly procedural design.
Data and logic in separate places.
Lots of getters and setters.
Unnecessarily created an Exception class.

7

4 3 No Tests

0%

Post

Slightly below Average.

Compared to the pre-
assessment, there is
improvement with

regards to the unit tests.
OO design pretty much

the same.

I think you've used very
few TDD principles.

Tests seemed to have
been retro-fitted.

Barely. Tried to
simplify it by using
boolean values to
represent slots,
but you lost me
somewhere.

6 124 2-12 1 123 1-26 Basic

Magic Numbers
Verbose Code
Inappropriate Naming
Comments
Dead Code
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Black Sheep
Conditional Complexity
Data Class

OO Skills needs improvement. Obsessed with boolean arrays.
CalendarPersistence - Place holder for persistence class. Failed
attempt at making it Singleton. Not sure why.
CommonSlotFinder - Basically a static helper class
MeetingCalendar - Valid domain object with some logic.
MeetingCalendarBusinessRules - Contains duplicated code which is
already present in MeetingCalendar
MyDate - Data class, no logic.
SchedulingAssistant - Main class with one single, large complex
method

9

12 5

Good test coverage.
Good test names, can be improved.
A huge method to set up the test
data. It gets quite hard to understand
why certain test results are showing
up.
The tests are a bit verbose/repetitive.
Tests heavily rely on matching boolean
arrays, this can get very difficult to
debug.
Poor test data. Please use test data
that is easy to understand.

88%

Pre Slightly below average

Not really. Instead
of figuring out
exempted items,
asks the user to
enter them.
Rest of the logic is
implemented
correctly except
there is a small
problem in the
rounding logic.
Tax % is being
externalized to the
DB.

6 141 2-14 1 58 2-12 Basic

Magic Number
Comments
Dead Code
Primitive Obsession
Lazy Class
Speculative Generality
Feature Envy
Data Class
Indecent Exposure

Mostly procedural design.
Data and logic in separate places.
Lots of getters and setters.
SalesTaxCalculator is the God object which does all the calculation.
Relies on primitives quite a bit.
Tried to come up with a generic solution, which makes code today
more complex than it needs to be.

2

2 7

Tested the happy path of the basic
logic.
Does not know the basic use of Asset
Statements

68%

Post

Slightly below Average.

Some improvement since
the pre-assessment. But
you have a long way to

go.

I don't think you've
applied TDD principles.

Partially. 3 81 2-11 2 45 3-17 Basic

Magic Numbers
Verbose Code
Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Black Sheep
Conditional Complexity
Data Class
Temporary Field

OO design needs significant improvement. Out of the 3 classes, the
core logic is just in 1 static class.

Clock (Interface. But the production code does not contain any
implementation of this interface.)
MeetingAssistant (Contains the main logic. Mostly a static class with a
lot of primitive obsession. Current design is flawed. The constructor
leaves the object in un-stable state. Why did you choose to use setter
based dependency injection for Clock? What if I don't call the set
method?)
User (Data class. No logic. Getters and Setters break encapsulation.)

9

12 4

Decent coverage.
Test names can be improved.
Lot of duplication in the test.
Test does not cover all the scenarios.
Looks like the test were retro-fitted in
the end.

86%

Pre Slightly below average

Partially.
The logic is
implemented
correctly.
The exempted
items are hard
coded.
The tax % is hard
coded as magic
numbers.
Production code
contains quite a bit
of test code.

8 146 1-22 2 92 5-11 Basic

Magic Number
Comments
Dead Code
Duplicated code
Primitive Obsession
Long Method
Switch Statements
Speculative Generality
Conditional Complexity
Combinatorial Explosion
Data Class
Indecent Exposure

Mostly procedural design.
Data and logic in separate places.
Lots of getters and setters.
SalesTaxCalculator and ReceiptGenerator are the God classes which
perform all the calculation.

10

27 4

Tested the happy path of the basic
logic.
Does not know the basic use of Asset
Statements
Production Code has quite a bit of test
code mixed up.

62%

Student 10

Student 11

Student 12

Student 13

Student 14

TDD Workshop Assesment by AgileFAQs

Confidential Prepared by Naresh Jain on 14-Nov-2009 Page 4

Name Assessment Overall Score Program Meets
Requirements

of
Classes

Total
Code
Size

Method
Length
Range

of
Test

Cases

Total
Code
Size

Method
Length
Range

Knowledge of
xUnit Code Smells in the code Object Oriented Design Skill Cyclomatic Complexity NPath

Complexity
Fan-Out

Complexity Quality of Unit Test Test Coverage

Production Code Test Code OO Design Skill Testing Skill

Post

Average.

Good improvement
compared to the pre-
assessment, but still

there is a lot of room for
improvement.

Looks like you've at least
applied some TDD

principles. But there is a
large scope for
improvement.

Mostly. 3 107 4-27 2 202 2-33
Decent.

Scope for
improvement

Verbose Code
Inappropriate Naming
Duplicated code
Primitive Obsession
Long Method
Conditional Complexity

OO design needs improvement.
MeetingScheduler (Static util class contains core of the logic.
Contains one, large complex method)
MeetingCalendar (Good domain object but contains a large complex
method. Avoid using deprecated methods.)
InvalidDateSlotException (Not sure why you need this exception
class.)

10

4 1

Good test coverage.
Good test names.
The tests are a bit verbose and not
very communicative.
Test code contains a MockedCalendar
which is extremely complicated. Each
test should set its value rather than
setting up the whole MockedCalendar
once at the beginning.
Since the MockedCalendar is hard-
coded with slots, its not easy to
understand why certain tests are
behaving the way they are. Quite
confusing.
When I run the tests, they are failing.

88%

Pre Slightly below average

Partially.
The logic is
implemented
correctly except
the rounding off
logic.
Both exempted
items and tax %
is hard coded as
magic numbers.

4 134 2-33 2 119 10-32 Basic

Inappropriate Naming
Comments
Dead Code
Duplicated code
Primitive Obsession
Large Class
Long Method
Switch Statements
Combinatorial Explosion
Indecent Exposure
Temporary Field

Moving towards an OO design, but still room for improvement.
Main class is a God class. Need to break it down.
Does not close files after using them.
Quite a bit of primitive obession. Need to use emuns more effectively.
Lots of getters and setters breaking encapsulation.

7

18 9

Testsed the happy path scenarios.
More end to end tests rather than unit
tests.
Tests don't work on my machine, sicne
they have hard coded file paths.
Tests are quite long and complex.

79%

Post

Average.

Good improvement
compared to the pre-

assessment, more room
for improvement.

Looks like you've at least
applied some TDD

principles. Again more
room for improvement.

Mostly. 4 126 2-19 1 104 2-8
Decent.

Scope for
improvement

Duplicated code
Primitive Obsession
Large Class
Lazy Class
Long Method
Black Sheep
Conditional Complexity
Data Class
Temporary Field

OO design can be improved.
MeetingCalendar (Main domain object which contains bulk of the
logic. Contains a very large, complex method. Needs to be simplified)
MeetingTime (Data Class - has not logic.)
Person (Except one method, this class is mostly a data class. Getters
and setters break encapsulation should be avoided.)
NoFreeSlotForMeetingException (Not sure what is the value of this
Exception class.)

11

2 1

Good test names.
Code Coverage can be improved.
Some complex piece of code is not
tested.
Test code is quite verbose and
contains some duplication. It can be
avoided.
When I run the tests, they are failing.
Since the calendars for the individuals
is set in the set inside a separate
method, its hard to understand why
certain tests results are showing up.

72%

Student 14

Student 15

